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ABSTRACT

We find congruences for the t-expansion coefficients of Drinfeld modular

forms for GL2(Fq [T ]). We give generalized analogies of Siegel’s classical

observation on SL2(Z) by determining all the linear relations among the

initial t-expansion coefficients of Drinfeld modular forms for GL2(Fq[T ]).

As a consequence spaces M0
k

are identified, in which there are congruences

for the s-expansion coefficients.

1. introduction

Recently, Choie et al. [3] generalized a classical observation of Siegel [10] by

determining all the linear relations among the initial Fourier coefficients of a

modular forms on SL2(Z). As a consequence, they showed p-divisibility prop-

erties for Fourier coefficients of a modular form on SL2(Z). The author [1]

investigated analogies of these results for a certain subspace of Mm
k which have

a strong condition. Here, Mm
k is the vector space of Drinfeld modular forms for

GL2(Fq[T ]) of weight k and type m. In this paper the author generalizes the

result for the space Mm
k .

In Section 3, we find divisibility properties for t-expansion coefficients of

Drinfeld modular forms in Mm
k (Theorem 3.1). As a consequence we obtain
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congruence relations of t-expansion coefficients of Drinfeld modular forms in

Mm
k (Remark 3.5).

By using the action of the Hecke operators Gekeler [6] and López [9] proved

the existence of congruences for the coefficients of two distinguished Drinfeld

modular forms, the Poincaré series Pq+1,1 and the discriminant function ∆,

respectively. Gallardo and López [4] showed that there exist congruences for

the s-expansion coefficients of the Eisenstein series of weight qk − 1, for any

positive integer k.

In Section 4, combining the idea in [3] and [10] we find all the linear relations

among the initial t-expansion coefficients of a Drinfeld modular form in M0
k

(Theorem 4.1). As a consequence spaces M0
k are identified, in which there are

congruences for the s-expansion coefficients.

Throughout, we adopt the following notation :

Fq finite field with q elements, of characteristic p

A Fq[T ], the ring of polynomials over Fq

K Fq(T ), the rational function field over Fq

K∞ Fq((1/T )), the completion of K at 1/T

C the completion of the algebraic closure of K∞

Ω C − K∞, the Drinfeld upper half plane

2. Preliminaries

Let L = π̃A be the lattice in C corresponding to the Carlitz module ρ and eL

be the exponential function associated to L, i.e.,

eL : C → C, eL(z) := z
∏

λ∈L−{0}

(
1 − z/λ

)
.

We define t = t(z) := 1/eL(π̃z) and s = tq−1.

A Drinfeld modular form (for GL2(A)) of weight k and type m (where k ≥ 0

is an integer and m is a class in Z/(q−1)) is a holomorphic function f : Ω → C

that satisfies:

(i) f(γz) = (detγ)−m(cz + d)kf(z) for any γ ∈ GL2(A),

(ii) f is holomorphic at the cusp ∞.

Since Ω is connected as an analytic space, any Drinfeld modular form f is

determined through its expansion around ∞. We, therefore, identify f with its
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t-expansion

f =

∞∑

i=0

af ((q − 1)i + m)t(q−1)i+m.

Here and in what follows, we choose the representative m in the class with 0 ≤

m < q − 1. Let Mm
k be the C-vector space of Drinfeld modular forms of weight

k and type m. Throughout the article we suppose that k ≡ 2m mod(q − 1) (if

not, Mm
k = {0}).

For any integer k ≥ (q + 1)m, the vector spaces, M0
k−(q+1)m and Mm

k , are

isomorphic via the isomorphism: f 7→ fhm, where h is the Poincaré series Pq+1,1

(see [7, page 681] for the definition of Pq+1,1). Indeed, we only have to show

that the map defined in the above is surjective. Since the graded C−algebra⊕
k′,m′ Mm′

k′ is the polynomial ring C[g, h] and 0 ≤ m < q − 1, any element w

of Mm
k is

∑
i cig

aih(q−1)bihm for some ci ∈ C and nonnegative integers ai, bi.

Here, g is a Drinfeld modular form of weight q−1 and type 0. Then an element∑
i cig

aih(q−1)bi of M0
k−(q+1)m is the preimage of w by the map defined in the

above.

Moreover, we know dimCM0
k = [k/(q2 − 1)] + 1. Hence, we have

(2.1) dimCMm
k =

[k − (q + 1)m

q2 − 1

]
+ 1.

Indeed, If k < (q + 1)m, then Mm
k = {0} hence dimCMm

k = [k−(q+1)m
q2−1 ] + 1.

Gekeler [5, 4.2. Theorem] found a formula for the dimension of the vector

space of finite modular forms of weight k and type m. Following the same

method as [5, 4.2. Theorem] we can also obtain the formula (2.1), which agrees

with Gekeler’s. On the other hand, the formula (2.1) is reformulated as follows:

dimCMm
k =





[ k
q2−1 ] + 1 if k∗ ≥ m(q + 1),

[ k
q2−1 ] otherwise,

where k∗ ≡ k mod(q2 − 1) and 0 ≤ k∗ < q2 − 1.

For any z ∈ Ω, we let Λz = Az + A, a rank 2 A-lattice in C. It induces a

Drinfeld module φz of rank 2 determined by

φz
T (X) = TX + g(z)Xq + ∆(z)Xq2

.

The j-invariant j(z) of φz is defined to be g(z)q+1/∆(z). The functions g and

∆ in z are Drinfeld modular forms of weights q− 1 and q2 − 1, respectively. We
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normalize g(z) and ∆(z) as follows

gnew(z) = π̃1−qg(z) and ∆new(z) = π̃1−q2

∆(z).

Hereafter we write g(z) and ∆(z) for gnew(z) and ∆new(z), respectively. Then

we have that ∆(z) = −h(z)q−1.

Let r := dimCMm
k . For any f ∈ Mm

k , we define

W (f) =
f

gαhm+(q−1)(r−1)
,

where α := (k − 2m)/(q − 1) + (1 − r)(q + 1) − m ∈ {0, 1, . . . , q}.

Proposition 2.1: W is a vector space isomorphism from Mm
k onto the space

R of polynomials in j of degree less than r.

Proof. For d = 0, 1, . . . , r − 1, the products jdgαhm+(q−1)(r−1) belong to Mm
k .

Indeed, its t-expansion at ∞ shows that jdgαhm+(q−1)(r−1) is analytic at ∞.

Moreover, j, g and h are analytic on Ω. Thus the products jdgαhm+(q−1)(r−1)

belong to Mm
k .

Since W (jdgαhm+(q−1)(r−1)) = jd, W carries the subspace Q of Mm
k gener-

ated by the Drinfeld modular forms jdgαhm+(q−1)(r−1) isomorphically onto R.

Hence, dimCQ = r which implies Q = Mm
k .

Let Γ = GL2(A). For any meromorphic Drinfeld modular form G(z) of

weight 2 and type 1, ω := G(z) dz is a 1-form on the compactification Γ\Ω of

Γ\Ω. Let G(z) =
∑∞

n=n0
a(n)tn be the t-expansion of G(z) at the cusp ∞. Let

π : Ω → Γ\Ω be the quotient map. Then we have

Proposition 2.2: (i) Res∞ω = a(1)/π̃.

(ii) ResτG(z) dz = Resπ(τ)ω for each τ ∈ Ω.

Proof. (i) follows from the simple fact that −π̃t2dz = dt. For any ordinary point

τ ∈ Ω, (ii) is obvious. Suppose τ ∈ Ω is an elliptic point. Let Γτ be the stabilizer

of τ in Γ and Z(K) be the center of scalar matrices. Let eτ = |Γτ/(Γτ ∩Z(K))|.

Indeed, eτ = q + 1 because τ is an elliptic point. We choose uniformizers x and

y on Ω and Γ\Ω, respectively, with xeτ = y. Then dy = eτxeτ−1dx = xeτ−1dx,

which gives the assertion (ii).
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3. Divisibility properties and congruences for coefficients of Drinfeld

modular forms

In this section, we study congruences for t-expansion coefficients of Drinfeld

modular forms belonging to Mm
k . The following theorem is motivated from the

classical results [3] of p-divisibility properties for Fourier coefficients of modular

forms on SL2(Z). These classical results play an important role in the p-adic

theory of modular forms (see [8]). Unfortunately the author could not find an

important role of Theorem 3.1 in the function field case. This requires a further

research.

For a prime p of degree 1, if f1 ≡ f2 6≡ 0 mod p for fi ∈ Mmi

ki
∩ A[[t]], then

k1 ≡ k2 mod (q − 1) ([7, page 698]). This result leads us to study coefficients

mod p among Drinfeld modular forms whose weights are the same mod (q− 1).

In addition, Theorem 3.1 gives mysterious congruence properties of Drinfeld

modular forms. Throughout this section we let r := dimCMm
k .

Theorem 3.1: Let

f =
∞∑

i=0

af ((q − 1)i + m)t(q−1)i+m ∈ Mm
k ∩ A[[t]].

Then for any integer a satisfying that pa + 1 ≥ m + r(q − 1) and m ≡ pa +

1 mod(q − 1), we have that

(i) if q > 2, then

af

(
(q − 1)

pa + 1 − m

q − 1
+ m

)
≡ 0 mod(T q − T );

(ii) if q = 2, then af(2a + 1) ≡ −af (1) mod(T q − T ).

Proof. We notice ([2, page 8]) that

(3.1)
dj

dz
= −π̃

gq

hq−2

a meromorphic Drinfeld modular form of weight 2 and type 1. By Proposition

2.1 we have that for any nonnegative integer v, jvW (f) dj
dz

is a meromorphic

Drinfeld modular form of weight 2 and type 1 which is holomorphic on Ω. By

Proposition 2.2 and the residue theorem (
∑

µ∈Γ\Ω Resµ(jvW (f) dj
dz

)dz = 0), the

coefficient of t in

jvW (f)
dj

dz
vanishes.
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Now we choose for v a particular non-negative integer la given by

la :=
pa + 1 − m

q − 1
− r.

This makes the denominator of jlaW (f)(dj/dz), a constant multiple of hpa

.

The fact ([7, (6.11) Proposition]) that g ≡ 1 mod(T q − T ), combined with

(3.1) shows that the coefficient of t in

(−1)la+1

π̃
jlaW (f)

dj

dz
=

g(q+1)la−α+qf

h(q−1)(r+la)+m−1
≡

f

hpa mod(T q − T )

≡

( ∞∑

i=0

af ((q − 1)i + m)t(q−1)i+m

)

×

(
(−1)pa

tpa + t((q−1)2−1)pa

+ · · ·

)
mod(T q − T )

is zero mod (T q − T ), where · · · means “higher terms in t”. This implies the

assertion.

Corollary 3.2: Suppose that k ≡ 2 modp. Then we have the following

(i) if q > 2, then

af ((q − 1)
pa + 1 − m

q − 1
+ m) ≡ 0 mod(T q − T )p,

(ii) if q = 2, then af(2a + 1) ≡ −af (1) mod(T q − T )p.

Proof. We use the same notations in the proof of Theorem 3.1. By the assump-

tion that k ≡ 2 mod p, we have that (q + 1)la − α + q ≡ 0 mod p. Hence we

obtain that

(−1)la+1

π̃
jlaW (f)

dj

dz
=

g(q+1)la−α+qf

h(q−1)(r+la)+m−1
≡

f

hpa mod (T q − T )p,

which implies the assertion.

Example 3.3: In the case q = 2, for any f =
∑∞

i=0 af (i + m)ti ∈ Mm
k ∩ A[[t]]

we have that for any integer a satisfying that 2a + 1 ≥ m + r,

af (2a + 1) ≡ −af (1)mod(T 2 − T ).

Example 3.4: Let the Poincaré series h := Pq+1,1 have t-expansion as follows

h =
∞∑

i=0

ah((q − 1)i + 1)t(q−1)i+1.
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Then the coefficient of t(q−1)i+2 in h2 is
∑i

j=0 ah((q−1)j+1)ah((q−1)(i−j)+1).

By Corollary 3.2 we have that for any multiple a of b (q = pb > 2),

pa+1−m

q−1∑

j=0

ah((q − 1)j + 1)ah

(
(q − 1)

(pa + 1 − m

q − 1
− j

)
+ 1

)
≡ 0 mod(T q − T )q.

Remark 3.5: Theorem 3.1 is powerful in the case the type m is equal to 2.

Using differential ∂k (see [2, page 3]) and product we can change the type of

Drinfeld modular forms. Then we can obtain congruence relations of t-expansion

coefficients of Drinfeld modular forms by Theorem 3.1.

4. Linear relations between Drinfeld modular form coefficients

In this section, we give all the linear relations among the initial t-expansion

coefficients of a Drinfeld modular form in M0
k . Let

r := dimCM0
k and α :=

k

q − 1
+ (1 − r)(q + 1) ∈ {0, 1, . . . , q}.

For any integer N ≥ 0, we let

Lk,N :=






(c0, c1, . . . , cr+N ) ∈ Cr+N+1 :

r+N∑

i=0

ciaf ((q − 1)i) = 0

∀f =

∞∑

i=0

af ((q − 1)i)t(q−1)i ∈ M0
k






be the space of linear relations satisfied by the first r + N + 1 t-expansion

coefficients of all the forms f ∈ M0
k . In his study of Hilbert modular forms,

Siegel [10] determined the spaces Lk,0 defined analogously.

To state our result, for each Drinfeld modular form u ∈ M0
(q2−1)N , define

numbers b(k, N, u; i) by

gq−α

h(q−1)(r+N)−1
u =

r+N∑

i=0

b(k, N, u; i)t−(q−1)i+1 +

∞∑

i=1

c(k, N, u; i)t(q−1)i+1.

In this notation, we have the following theorem.

Theorem 4.1: The map φk,N : M0
(q2−1)N −→ Lk,N defined by

φk,N (u) = (b(k, N, u; 0), b(k, N, u; 1), . . . , b(k, N, u; r + N))

provides a linear isomorphism from M0
(q2−1)N onto Lk,N .
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Proof. Let

u ∈ M0
(q2−1)N and f =

∞∑

i=0

af ((q − 1)i)t(q−1)i ∈ M0
k .

The coefficient
∑r+N

i=0 b(k, N, u; i)af((q − 1)i) of t in

fgq−α

h(q−1)(r+N)−1
u = −

1

π̃
W (fu)

dj

dz

is zero. Therefore, the map φk,N is well-defined. Clearly, φk,N is linear. Sup-

pose that φk,N (u) = 0. This assumption implies that W (fu)dj/dz has a zero at

least of order 2 at ∞. Furthermore, W (fu)dj/dz is holomorphic on Ω. There-

fore, ufgq−α/h(q−1)(r+N)−1 is a cusp form of weight 2 and type 1. Hence,

ufgq−α/h(q−1)(r+N)−1 is the zero function, which implies u = 0. Hence, φk,N

is injective. Let f1, . . . , fr be a basis of M0
k . Let A be a r × (N + 1 + r)-matrix

whose ith row consists of the initial N + r + 1 coefficients of fi. Then the

null space of A is equal to Lk,N . A valance formula [7, (5.14)] shows that the

rank of A is r. Consequently, the rank-nullity theorem implies that φk,N is

surjective.
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