LINEAR RELATIONS AND CONGRUENCES FOR THE COEFFICIENTS OF DRINFELD MODULAR FORMS^{*}

BY

SOYOUNG CHOI

Department of Mathematics Education, Dongguk University Kyongju 780-714, Republic of Korea e-mail: young@kias.re.kr

ABSTRACT

We find congruences for the *t*-expansion coefficients of Drinfeld modular forms for $GL_2(\mathbb{F}_q[T])$. We give generalized analogies of Siegel's classical observation on $SL_2(\mathbb{Z})$ by determining all the linear relations among the initial t-expansion coefficients of Drinfeld modular forms for $GL_2(\mathbb{F}_q[T])$. As a consequence spaces M_k^0 are identified, in which there are congruences for the s-expansion coefficients.

1. introduction

Recently, Choie et al. [3] generalized a classical observation of Siegel [10] by determining all the linear relations among the initial Fourier coefficients of a modular forms on $SL_2(\mathbb{Z})$. As a consequence, they showed p-divisibility properties for Fourier coefficients of a modular form on $SL_2(\mathbb{Z})$. The author [1] investigated analogies of these results for a certain subspace of M_k^m which have a strong condition. Here, M_k^m is the vector space of Drinfeld modular forms for $GL_2(\mathbb{F}_q[T])$ of weight k and type m. In this paper the author generalizes the result for the space M_k^m .

In Section 3, we find divisibility properties for t -expansion coefficients of Drinfeld modular forms in M_k^m (Theorem 3.1). As a consequence we obtain

[∗] This work was supported by KOSEF R01-2006-000-10320-0 and by the Korea Research Foundation Grant (KRF-2005-214-M01-2005-000-10100-0) Received May 6, 2006 and in revised form August 18, 2006

congruence relations of t-expansion coefficients of Drinfeld modular forms in M_k^m (Remark 3.5).

By using the action of the Hecke operators Gekeler [6] and López [9] proved the existence of congruences for the coefficients of two distinguished Drinfeld modular forms, the Poincaré series $P_{q+1,1}$ and the discriminant function Δ , respectively. Gallardo and López [4] showed that there exist congruences for the s-expansion coefficients of the Eisenstein series of weight $q^k - 1$, for any positive integer k.

In Section 4, combining the idea in [3] and [10] we find all the linear relations among the initial t-expansion coefficients of a Drinfeld modular form in M_k^0 (Theorem 4.1). As a consequence spaces M_k^0 are identified, in which there are congruences for the s-expansion coefficients.

Throughout, we adopt the following notation :

- \mathbb{F}_q finite field with q elements, of characteristic p
- $A \mathbb{F}_q[T]$, the ring of polynomials over \mathbb{F}_q
- $K \mathbb{F}_q(T)$, the rational function field over \mathbb{F}_q
- K_{∞} $\mathbb{F}_q((1/T))$, the completion of K at $1/T$
- C the completion of the algebraic closure of K_{∞}
- Ω C K_{∞} , the Drinfeld upper half plane

2. Preliminaries

Let $L = \tilde{\pi}A$ be the lattice in C corresponding to the Carlitz module ρ and e_L be the exponential function associated to L , i.e.,

$$
e_L: C \to C, \quad e_L(z) := z \prod_{\lambda \in L - \{0\}} (1 - z/\lambda).
$$

We define $t = t(z) := 1/e_L(\tilde{\pi}z)$ and $s = t^{q-1}$.

A Drinfeld modular form (for $GL_2(A)$) of weight k and type m (where $k \geq 0$ is an integer and m is a class in $\mathbb{Z}/(q-1)$ is a holomorphic function $f : \Omega \to C$ that satisfies:

(i) $f(\gamma z) = (\det \gamma)^{-m} (cz + d)^k f(z)$ for any $\gamma \in GL_2(A)$,

(ii) f is holomorphic at the cusp ∞ .

Since Ω is connected as an analytic space, any Drinfeld modular form f is determined through its expansion around ∞ . We, therefore, identify f with its

t-expansion

$$
f = \sum_{i=0}^{\infty} a_f((q-1)i+m)t^{(q-1)i+m}.
$$

Here and in what follows, we choose the representative m in the class with $0 \leq$ $m < q - 1$. Let M_k^m be the C-vector space of Drinfeld modular forms of weight k and type m. Throughout the article we suppose that $k \equiv 2m \mod (q-1)$ (if not, $M_k^m = \{0\}$).

For any integer $k \geq (q+1)m$, the vector spaces, $M_{k-(q+1)m}^0$ and M_k^m , are isomorphic via the isomorphism: $f \mapsto fh^m$, where h is the Poincaré series $P_{q+1,1}$ (see [7, page 681] for the definition of $P_{q+1,1}$). Indeed, we only have to show that the map defined in the above is surjective. Since the graded C−algebra $\bigoplus_{k',m'} M^{m'}_{k'}$ is the polynomial ring $C[g,h]$ and $0 \leq m < q-1$, any element w of M_k^m is $\sum_i c_i g^{a_i} h^{(q-1)b_i} h^m$ for some $c_i \in C$ and nonnegative integers a_i , b_i . Here, g is a Drinfeld modular form of weight $q-1$ and type 0. Then an element $\sum_i c_i g^{a_i} h^{(q-1)b_i}$ of $M^0_{k-(q+1)m}$ is the preimage of w by the map defined in the above.

Moreover, we know $\dim_{\mathbb{C}} M_k^0 = [k/(q^2-1)] + 1$. Hence, we have

(2.1)
$$
\dim_C M_k^m = \left[\frac{k - (q+1)m}{q^2 - 1} \right] + 1.
$$

Indeed, If $k < (q+1)m$, then $M_k^m = \{0\}$ hence $\dim_C M_k^m = \left[\frac{k-(q+1)m}{q^2-1}\right] + 1$.

Gekeler [5, 4.2. Theorem] found a formula for the dimension of the vector space of finite modular forms of weight k and type m . Following the same method as $[5, 4.2$. Theorem we can also obtain the formula (2.1) , which agrees with Gekeler's. On the other hand, the formula (2.1) is reformulated as follows:

$$
\mathrm{dim}_{C}M^{m}_{k} = \begin{cases} [\frac{k}{q^2-1}] + 1 & \text{ if } k^* \geq m(q+1), \\ [\frac{k}{q^2-1}] & \text{ otherwise}, \end{cases}
$$

where $k^* \equiv k \mod (q^2 - 1)$ and $0 \le k^* < q^2 - 1$.

For any $z \in \Omega$, we let $\Lambda_z = Az + A$, a rank 2 A-lattice in C. It induces a Drinfeld module ϕ^z of rank 2 determined by

$$
\phi_T^z(X) = TX + g(z)X^q + \Delta(z)X^{q^2}.
$$

The j-invariant $j(z)$ of ϕ^z is defined to be $g(z)^{q+1}/\Delta(z)$. The functions g and Δ in z are Drinfeld modular forms of weights $q-1$ and q^2-1 , respectively. We normalize $g(z)$ and $\Delta(z)$ as follows

$$
g_{\text{new}}(z) = \widetilde{\pi}^{1-q} g(z)
$$
 and $\Delta_{\text{new}}(z) = \widetilde{\pi}^{1-q^2} \Delta(z)$.

Hereafter we write $g(z)$ and $\Delta(z)$ for $g_{\text{new}}(z)$ and $\Delta_{\text{new}}(z)$, respectively. Then we have that $\Delta(z) = -h(z)^{q-1}$.

Let $r := \dim_C M_k^m$. For any $f \in M_k^m$, we define

$$
W(f) = \frac{f}{g^{\alpha}h^{m+(q-1)(r-1)}},
$$

where $\alpha := (k - 2m)/(q - 1) + (1 - r)(q + 1) - m \in \{0, 1, ..., q\}.$

PROPOSITION 2.1: W is a vector space isomorphism from M_k^m onto the space R of polynomials in j of degree less than r .

Proof. For $d = 0, 1, ..., r - 1$, the products $j^d g^{\alpha} h^{m + (q-1)(r-1)}$ belong to M_k^m . Indeed, its t-expansion at ∞ shows that $j^d g^{\alpha} h^{m+(q-1)(r-1)}$ is analytic at ∞ . Moreover, j, g and h are analytic on Ω . Thus the products $j^d g^{\alpha} h^{m+(q-1)(r-1)}$ belong to M_k^m .

Since $W(j^d g^{\alpha} h^{m+(q-1)(r-1)}) = j^d$, W carries the subspace Q of M_k^m generated by the Drinfeld modular forms $j^d g^{\alpha} h^{m+(q-1)(r-1)}$ isomorphically onto R. Hence, $\dim_{\mathbb{C}} Q = r$ which implies $Q = M_k^m$.

Let $\Gamma = GL_2(A)$. For any meromorphic Drinfeld modular form $G(z)$ of weight 2 and type 1, $\omega := G(z) dz$ is a 1-form on the compactification $\overline{\Gamma \backslash \Omega}$ of Γ\Ω. Let $G(z) = \sum_{n=n_0}^{\infty} a(n)t^n$ be the t-expansion of $G(z)$ at the cusp ∞ . Let $\pi : \Omega \to \Gamma \backslash \Omega$ be the quotient map. Then we have

PROPOSITION 2.2: (i) $Res_{\infty} \omega = a(1)/\tilde{\pi}$. (ii) $\text{Res}_{\tau}G(z) dz = \text{Res}_{\pi(\tau)}\omega$ for each $\tau \in \Omega$.

Proof. (i) follows from the simple fact that $-\tilde{\pi}t^2 dz = dt$. For any ordinary point $\tau \in \Omega$, (ii) is obvious. Suppose $\tau \in \Omega$ is an elliptic point. Let Γ_{τ} be the stabilizer of τ in Γ and $Z(K)$ be the center of scalar matrices. Let $e_{\tau} = |\Gamma_{\tau}/(\Gamma_{\tau} \cap Z(K))|$. Indeed, $e_{\tau} = q + 1$ because τ is an elliptic point. We choose uniformizers x and y on Ω and $\Gamma \backslash \Omega$, respectively, with $x^{e_{\tau}} = y$. Then $dy = e_{\tau} x^{e_{\tau} - 1} dx = x^{e_{\tau} - 1} dx$, which gives the assertion (ii).

3. Divisibility properties and congruences for coefficients of Drinfeld modular forms

In this section, we study congruences for t -expansion coefficients of Drinfeld modular forms belonging to M_k^m . The following theorem is motivated from the classical results [3] of p-divisibility properties for Fourier coefficients of modular forms on $SL_2(\mathbb{Z})$. These classical results play an important role in the *p*-adic theory of modular forms (see [8]). Unfortunately the author could not find an important role of Theorem 3.1 in the function field case. This requires a further research.

For a prime $\mathfrak p$ of degree 1, if $f_1 \equiv f_2 \not\equiv 0 \mod \mathfrak p$ for $f_i \in M_{k_i}^{m_i} \cap A[[t]]$, then $k_1 \equiv k_2 \mod (q-1)$ ([7, page 698]). This result leads us to study coefficients mod **p** among Drinfeld modular forms whose weights are the same mod $(q-1)$. In addition, Theorem 3.1 gives mysterious congruence properties of Drinfeld modular forms. Throughout this section we let $r := \dim_C M_k^m$.

THEOREM 3.1: Let

$$
f = \sum_{i=0}^{\infty} a_f((q-1)i+m)t^{(q-1)i+m} \in M_k^m \cap A[[t]].
$$

Then for any integer a satisfying that $p^a + 1 \ge m + r(q - 1)$ and $m \equiv p^a +$ $1 \mod (q-1)$, we have that

(i) if $q > 2$, then

$$
a_f\Big((q-1)\frac{p^a+1-m}{q-1}+m\Big)\equiv 0\operatorname{mod}(T^q-T);
$$

(ii) if
$$
q = 2
$$
, then $a_f(2^a + 1) \equiv -a_f(1) \mod (T^q - T)$.

Proof. We notice ([2, page 8]) that

(3.1)
$$
\frac{dj}{dz} = -\widetilde{\pi} \frac{g^q}{h^{q-2}}
$$

a meromorphic Drinfeld modular form of weight 2 and type 1. By Proposition 2.1 we have that for any nonnegative integer v, $j^v W(f) \frac{dj}{dz}$ is a meromorphic Drinfeld modular form of weight 2 and type 1 which is holomorphic on Ω . By Proposition 2.2 and the residue theorem $\left(\sum_{\mu \in \overline{\Gamma \setminus \Omega}} \text{Res}_{\mu}(j^v W(f) \frac{dj}{dz}) dz = 0\right)$, the coefficient of t in

$$
j^v W(f) \frac{dj}{dz}
$$

vanishes.

Now we choose for v a particular non-negative integer l_a given by

$$
l_a := \frac{p^a + 1 - m}{q - 1} - r.
$$

This makes the denominator of $j^{l_a}W(f)(dj/dz)$, a constant multiple of h^{p^a} .

The fact ([7, (6.11) Proposition]) that $g \equiv 1 \mod (T^q - T)$, combined with (3.1) shows that the coefficient of t in

$$
\frac{(-1)^{l_a+1}}{\tilde{\pi}} j^{l_a} W(f) \frac{dj}{dz} = \frac{g^{(q+1)l_a - \alpha + q} f}{h^{(q-1)(r+l_a) + m-1}} \equiv \frac{f}{h^{p^a}} \operatorname{mod}(T^q - T)
$$

$$
\equiv \left(\sum_{i=0}^{\infty} a_f ((q-1)i + m)t^{(q-1)i + m} \right)
$$

$$
\times \left(\frac{(-1)^{p^a}}{t^{p^a}} + t^{((q-1)^2 - 1)p^a} + \cdots \right) \operatorname{mod}(T^q - T)
$$

is zero mod $(T^q - T)$, where \cdots means "higher terms in t". This implies the assertion. \blacksquare

COROLLARY 3.2: Suppose that $k \equiv 2 \mod p$. Then we have the following (i) if $q > 2$, then

$$
a_f((q-1)\frac{p^a+1-m}{q-1}+m) \equiv 0 \mod (T^q-T)^p
$$
,

(ii) if $q = 2$, then $a_f(2^a + 1) \equiv -a_f(1) \mod (T^q - T)^p$.

Proof. We use the same notations in the proof of Theorem 3.1. By the assumption that $k \equiv 2 \mod p$, we have that $(q+1)l_a - \alpha + q \equiv 0 \mod p$. Hence we obtain that

$$
\frac{(-1)^{l_a+1}}{\widetilde{\pi}} j^{l_a} W(f) \frac{dj}{dz} = \frac{g^{(q+1)l_a - \alpha + q} f}{h^{(q-1)(r+l_a) + m - 1}} \equiv \frac{f}{h^{p^a}} \bmod (T^q - T)^p,
$$

which implies the assertion.

Example 3.3: In the case $q = 2$, for any $f = \sum_{i=0}^{\infty} a_f (i+m)t^i \in M_k^m \cap A[[t]]$ we have that for any integer a satisfying that $2^a + 1 \ge m + r$,

$$
a_f(2^a + 1) \equiv -a_f(1) \mod (T^2 - T).
$$

Example 3.4: Let the Poincaré series $h := P_{q+1,1}$ have t-expansion as follows

$$
h = \sum_{i=0}^{\infty} a_h((q-1)i+1)t^{(q-1)i+1}.
$$

Then the coefficient of $t^{(q-1)i+2}$ in h^2 is $\sum_{j=0}^{i} a_h((q-1)j+1)a_h((q-1)(i-j)+1)$. By Corollary 3.2 we have that for any multiple a of b $(q = p^b > 2)$,

$$
\sum_{j=0}^{\frac{p^a+1-m}{q-1}} a_h((q-1)j+1)a_h\Big((q-1)\Big(\frac{p^a+1-m}{q-1}-j\Big)+1\Big) \equiv 0 \mod (T^q-T)^q.
$$

REMARK 3.5: Theorem 3.1 is powerful in the case the type m is equal to 2. Using differential ∂_k (see [2, page 3]) and product we can change the type of Drinfeld modular forms. Then we can obtain congruence relations of t-expansion coefficients of Drinfeld modular forms by Theorem 3.1.

4. Linear relations between Drinfeld modular form coefficients

In this section, we give all the linear relations among the initial t -expansion coefficients of a Drinfeld modular form in M_k^0 . Let

$$
r := \dim_C M_k^0
$$
 and $\alpha := \frac{k}{q-1} + (1-r)(q+1) \in \{0, 1, ..., q\}.$

For any integer $N \geq 0$, we let

$$
L_{k,N} := \left\{ (c_0, c_1, \dots, c_{r+N}) \in C^{r+N+1} : \begin{array}{c} \sum_{i=0}^{r+N} c_i a_f((q-1)i) = 0 \\ \forall f = \sum_{i=0}^{\infty} a_f((q-1)i) t^{(q-1)i} \in M_k^0 \end{array} \right\}
$$

be the space of linear relations satisfied by the first $r + N + 1$ t-expansion coefficients of all the forms $f \in M_k^0$. In his study of Hilbert modular forms, Siegel [10] determined the spaces $L_{k,0}$ defined analogously.

To state our result, for each Drinfeld modular form $u \in M_{(q^2-1)N}^0$, define numbers $b(k, N, u; i)$ by

$$
\frac{g^{q-\alpha}}{h^{(q-1)(r+N)-1}}u = \sum_{i=0}^{r+N} b(k, N, u; i)t^{-(q-1)i+1} + \sum_{i=1}^{\infty} c(k, N, u; i)t^{(q-1)i+1}.
$$

In this notation, we have the following theorem.

THEOREM 4.1: The map $\phi_{k,N}: M_{(q^2-1)N}^0 \longrightarrow L_{k,N}$ defined by

$$
\phi_{k,N}(u) = (b(k, N, u; 0), b(k, N, u; 1), \dots, b(k, N, u; r + N))
$$

provides a linear isomorphism from $M_{(q^2-1)N}^0$ onto $L_{k,N}$.

Proof. Let

$$
u \in M_{(q^2-1)N}^0
$$
 and $f = \sum_{i=0}^{\infty} a_f((q-1)i)t^{(q-1)i} \in M_k^0$.

The coefficient $\sum_{i=0}^{r+N} b(k, N, u; i) a_f((q-1)i)$ of t in

$$
\frac{fg^{q-\alpha}}{h^{(q-1)(r+N)-1}}u = -\frac{1}{\widetilde{\pi}}W(fu)\frac{dj}{dz}
$$

is zero. Therefore, the map $\phi_{k,N}$ is well-defined. Clearly, $\phi_{k,N}$ is linear. Suppose that $\phi_{k,N}(u) = 0$. This assumption implies that $W(fu)di/dz$ has a zero at least of order 2 at ∞ . Furthermore, $W(fu)di/dz$ is holomorphic on Ω . Therefore, $\frac{ufg^{q-\alpha}}{h^{(q-1)(r+N)-1}}$ is a cusp form of weight 2 and type 1. Hence, $ufg^{q-\alpha}/h^{(q-1)(r+N)-1}$ is the zero function, which implies $u=0$. Hence, $\phi_{k,N}$ is injective. Let f_1, \ldots, f_r be a basis of M_k^0 . Let A be a $r \times (N + 1 + r)$ -matrix whose *i*th row consists of the initial $N + r + 1$ coefficients of f_i . Then the null space of A is equal to $L_{k,N}$. A valance formula [7, (5.14)] shows that the rank of A is r. Consequently, the rank-nullity theorem implies that $\phi_{k,N}$ is surjective. ш

4.1. Acknowledgements. The author would like to express her sincere gratitude to the referee for introducing Gekeler's paper [5] and for suggestions on writing of manuscript.

References

- [1] S. Choi, Congruences for the coefficients of Drinfeld modular forms, Journal of Number Theory, preprint.
- [2] S. Choi, Some formulas for the coefficients of Drinfeld modular forms, Journal of Number Theory 116 (2006), 159–167.
- [3] Y. Choie, W. Kohnen and K. Ono, Linear relations between modular form coefficients and non-ordinary primes, The Bulletin of the London Mathematical Society 37 (2005), 335–341.
- [4] J. Gallardo and B. Lopez, "Weak" congruences for coefficients of the Eisenstein series for $\mathbb{F}_q[T]$ of weight q^k-1 , Journal of Number Theory 102 (2003), 107-117.
- [5] E. U. Gekeler, Finite modular forms, Finite Fields and their Applications 7 (2001), 553–572.
- [6] E. U. Gekeler, Growth order and congruences of coefficients of the Drinfeld discriminant function, Journal of Number Theory 77 (1999), 314–325.
- [7] E. U. Gekeler, On the coefficients of Drinfeld modular forms, Inventiones Mathematicae 93 (1988), 667–700.

- [8] K. Hatada, Eigenvalues of Hecke operators on SL(2, Z), Mathematische Annalen 239 (1979), 75–96.
- [9] B. López, A congruence for the coefficients of the Drinfeld discriminant function, C. R. Acad. Sci. Paris Ser. I Math. 330 (2000), 1053–1058.
- [10] C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, (German) Nachrichten der Akademie der Wissenschaften in Gottingen. II. (1969), 87–102.